在國內,工業產品的生產量每年都在增加,因此,用戶對產品的質量要求也越來越高了,這里說的不僅僅是性能問題,還包括完好的外觀,也就是說產品的表面質量,但是,在制造過程中難免會存在一些表面缺陷的情況發生,這個也是無法避免的情況。機器視覺表面缺陷檢測系統作為今后重點的研究方向,在國內也取得了不錯的成果,但還是存在一些問題和難點,下面國辰機器人就為大家一一講解一下。
1) 受環境、光照、生產工藝和噪聲等多重因素影響,檢測系統的信噪比一般較低,微弱信號難以檢出或不能與噪聲有效區分。如何構建穩定、可靠、魯棒的檢測系統,以適應光照變化、噪聲以及其他外界不良環境的干擾,是要解決的問題之一。
2) 由于檢測對象多樣、表面缺陷種類繁多、形態多樣、復雜背景,對于眾多缺陷類型產生的機理以及其外在表現形式之間的關系尚不明確,致使對缺陷的描述不充分,缺陷的特征提取有效性不高,缺陷目標分割困難;同時,很難找到“標準”圖像作為參照,這給缺陷的檢測和分類帶來困難,造成識別率尚有待提高。
3) 機器視覺表面缺陷檢測,特別是在線檢測,其特點是數據量龐大、冗余信息多、特征空間維度高,同時考慮到真正的機器視覺面對的對象和問題的多樣性,從海量數據中提取有限缺陷信息的算法能力不足,實時性不高。
4) 與機器視覺表面檢測密切相關的人工智能理論雖然得到了很大的發展,但如何模擬人類大腦的信息處理功能去構建智能機器視覺系統還需要理論上的進一步研究,如何更好的基于生物視覺認識、指導機器視覺得檢測也是研究人員的難點之一。
5) 從機器視覺表面檢測的準確性方面來看,盡管一系列優秀的算法不斷出現,但在實際應用中準確率仍然與滿足實際應用的需求尚有一定差距,如何解決準確識別與模糊特征之間、實時性與準確性之間的矛盾仍然是目前的難點。
以上內容就是國辰機器人為大家介紹的,希望能為大家提供幫助,此外,不同產品的表面缺陷有著不同的定義和類型,一般而言表面缺陷是產品表面局部物理或化學性質不均勻的區域,如金屬表面的劃痕、斑點、孔洞,紙張表面的色差、壓痕,玻璃等非金屬表面的夾雜、破損、污點,等等。